Chapter 8. Covalent Bonding and Molecular Structure

- **8.1 An Introduction to Covalent Bonding**
- **8.2 Lewis Structures**
- **8.3 Bond Properties**
- **8.4 Electron Distribution in Molecules**
- **8.5 Valence-Shell Electron-Pair Repulsion Theory and Molecular Shape 8.6 Molecular Polarity**

Examine chemical bonding in detail by applying what you have learned in Chapters 6 and 7 (atomic structure, electron configurations, and periodic trends) to the chemical bonds formed between atoms and ions and the shapes of molecules and ions that contain covalent bonds.

Covalent Bonding and Molecular Structure

8.1 An Introduction to Covalent Bonding

8.1 Forms of Bonding Atoms

- Complete transfer of 1 or more electrons from one atom to another
	- Contains strong attractive forces among cations and anions use electrostatic forces
- Valence electrons shared between two adjacent atoms
	- Attractive forces between electrons and the nuclei of adjacent atoms within a molecule
- Attractive forces that exist between electrons and the nuclei
	- Hold pure metals together
	- Cation exist in a "sea" of electrons
- Transfer/sharing of e- results in each atom/ion attaining an octet or noble gas electron configuration

Relationship Between Potential Energy and Interatomic Distance

4

Covalent Bonding and Molecular Structure

8.2 Lewis Structures

Covalent Bonding and Lewis Structures

Lewis Structures (Electron-Dot Structures):

- **Lewis symbol**: Simplest Lewis structure for an element
- Element symbol represents nucleus and electrons are arranged around its four sides
- Dots represent valence electrons
- Can be drawn to reflect electron configuration
- To form bonds, elements gain, lose, or share e to achieve **8** *valence* e -

8.2

8.2 Lewis Dot Symbols

Main group elements, the number of dots in the Lewis dot symbol is the **same** as the group number

8.2 Covalent Bonding

Lewis summarized much of his theory of chemical bonding with the octet rule.

According to the *atoms will lose, gain, or share* electrons to achieve a noble gas electron configuration.

8.2 Covalent Bonding H_1 H–H H_2 H–H H -atom: H_2 molecule: $H H$

Two H atoms move close enough to each other to *share* the e-pair.

Arrangement allows each H atom to "count" both electrons as its **own** and to "feel" as though it has the noble gas e- configuration of He.

Number of unpaired valence electrons gives general indication of the number of bonds an atom will likely form:

- Hydrogen has only 1 electron and can only make 1 covalent bond
- Group 7A has only 1 unpaired electron, generally forms 1 covalent bond
- Group 6A had 2 unpaired electrons, generally forms of 2 covalent bonds

8.2 Covalent Bonding with Multiple Bonds

Electron-Dot Structures

Multiple bonds are measured by than their corresponding single-bond counterparts **because there are more shared electrons in the shared electron in the shared electron in the shared electron in the shared el** the atoms together.

8.2

Guidelines for Writing Lewis Structures Summary 8.2

- 1. Count the valence e for each atom in the molecule. Electron configuration, Nobel Gas notation
- 2. Draw a skeleton structure 1st listed atom goes in the middle except for H and halogens. Join atoms with single lines (pairs of e-).
- 3. Add e- pairs to form octets (except H). Start with terminal atoms.
- 4. Extra e Place around the central atom.
- 5. Too few e⁻ Convert lone pairs into multiple bonds.
- 6. Self-Check, all atoms have an octet? Are all valence e- used?

Electron-Dot Structures of Polyatomic Molecules 8.2

Draw an electron-dot structure for **CH2O**.

valence electrons **Step 1:** C H O

Step 2:

Electron-Dot Structures of Polyatomic Molecules 8.2

Draw an electron-dot structure for **H3O1+** .

valence electrons **Step 1:**

Step 2: Step 4:

Exceptions to the Octet Rule

- H and He form e- deficient compounds, only need 2 e-
- Be and B form e deficient compounds, very reactive molecules:

$$
\boxed{\mathsf{H}\mathsf{-Be}\mathsf{-H}}
$$

 $2 + 2(1) = 4$ valence e-

 $3 + 3(7) = 24$ valence e-

8.2

Some stable molecules have an odd number of e-

NO $5 + 6 = 11$ valence e^{-}

$$
\therefore \mathbf{N} = \ddot{\mathbf{C}} \cdot
$$

 $NO₂ 5 + 2(6) = 17$ valence e-

$$
\therefore \ddot{Q} - \dot{N} = Q
$$

Free radical atom or molecule with unpaired e. Very reactive. Most stable molecules have paired e-

8.2

"Expanded octets" are relatively common.

ONLY 3p to 6p can have more than 8!

Resulting from the *d*-orbitals accepting extra e-

Atoms of these elements, all of which are in the third row or lower, are larger than their second-row counterparts and can therefore accommodate more bonded atoms.

8.2 Resonance

Molecules that have more than one

valid Lewis structures that differ in the arrangement of e-

- Atom arrangement remains the **same**
- Different location and/or types of **BONDING**

Covalent Bonding and Molecular Structure

8.3 Bond Properties

Interactive Table 8.3.1 - Average Bond Lengths (pm) 8.3

8.3 Bond Length Trends

• Bond length **increases** with **increasing** atomic size

- As the bond order **increases**, the bond length
	- e- density between the two nuclei **increase** with each added pair of e-
	- Attractive force between e- and the nuclei **increases**
	- $-$ Distance between the bonding nuclei

Succeed

8.3 Bond Enthalpy

Bond energy **increases** with **increasing** bond order and **bond length** Greater the bond order, the **higheral the bond strength and the** the bond

Learn Succeed"

8.3 Bond Enthalpy aka Bond Energy

energy required to break a chemical bond 1 mole of gaseous molecules. Always **Endothermic**!

 $\Delta H^{\circ} = \Sigma BE(reactants) - \Sigma BE(products)$

 $=$ total energy *input* (to *break* bonds)

- total energy *released* (by bond *formation*)

 $\Delta H^{\circ} = [\Sigma \# \text{ bonds*mol* } H_{\text{Reactant bonds}}]$ $-$ **[** Σ **# bonds*mol*** $H_{product\, bonds}$]

Bond Dissociation Energies $H_2(g) + Cl_2(g) \longrightarrow 2HCl(g)$

H-H (g) + Cl-Cl $(g) \rightarrow 2$ H-Cl

 $\Delta H^{\circ} = \left[\Sigma \# \text{ bonds*mol* } H_{\text{Reactant bonds}} \right]$ $[\Sigma \#$ bonds*mol* $H_{Product bonds}]$

 $\Delta H^\circ = (\# \mathsf{H}\text{-}\mathsf{H}^*\mathsf{mol}_{\mathsf{H2}}{}^*\mathsf{H}_{\mathsf{H}\text{-}\mathsf{H}} + (\# \mathsf{Cl}\text{-}\mathsf{Cl}^*\mathsf{mol}_{\mathsf{Cl2}}{}^*\mathsf{H}_{\mathsf{Cl}\text{-}\mathsf{Cl}})$ - $((\# \mathsf{H}\text{-}\mathsf{Cl}^*\mathsf{mol}_{\mathsf{HCl}}{}^*\mathsf{H}_{\mathsf{H}\text{-}\mathsf{Cl}})$

- [(1bond)(2mol)(432 kJ/mol)]

$$
\Delta H^{\circ} = [
$$

8.3

8.3 Bond Enthalpy

Exercise 2: Using Bond Energies

8.3

Gra
Hil

8.3 Ionic Bonding, Lattice Energy

Increase lattice energy, the stable the compound and the the melting point, need thermal energy, heat

(q).

8.3 Comparison of Ionic and Covalent Bonding

Covalent Bonding and Molecular Structure

8.4 Electron Distribution in Molecules

8.4 Lewis Structures and Formal Charge

can be used to determine the most plausible Lewis structures when more than one possibility exists for a compound.

- All the atom's nonbonding e- are associated with the atom.
- Half of the atom's bonding e- are associated with the atom.

onnect Succeed

8.4 Formal Charges

If there is choice between Lewis structures:

- Lewis structure in which **all** formal charges are **ZERO** is preferred
- **SMALLER** formal charges are favored.
- Negative formal charges should be on the **MOST** electronegative atoms
- Like charges should **NOT** be on adjacent atoms

Which $N₂O$ structure is preferred?

$$
\vdots\vdots\vdots\vdots\vdots
$$

$$
:Q=N=N\vdash N
$$

Formal charges:

Preferred.
$$
EN_{O}
$$
 EN_{N}

8.4 Example - Formic Acid

There are two possible Lewis structures for this molecule Each has the same number of bonds. Which structure is better? Determine the formal charge on each atom in the 2 structures

8.4 Electronegativity and Polarity

is the ability of an atom in a compound to draw electrons to itself.

к

Electronegativity is related to electron affinity (makes anions) and ionization energy (makes cation).

Increasing electronegativity

8.4 Electronegativity and Polarity

Ionic and covalent bonds are simply the extremes in bonding. Bonds that fall between these two extremes are **polarishing** that electrons are shared but are not shared equally. Such bonds are referred to as

Exercise: Bond Polarity

• Which of the following bonds are nonpolar? C–Cl, H–H, H–Cl, P–H, S–O, B–F, and F–F

8.4

Covalent Bonding and Molecular Structure

8.5 Valence-Shell Electron-Pair Repulsion Theory and Molecular Shape

Molecular Shapes: The VSEPR Model 8.5

VSEPR:

Electrons in bonds and in lone pairs can be thought of as "charge clouds" (areas of e-density) that repel one another and stay as far apart as possible, this causing molecules to assume specific shapes.

Working from a the Lewis electron-dot structure: 1. count the number of "charge clouds,"

- domains = bonding or lone e- pair
- 2. then determine the molecular shape.

8.5 VSEPR Theory

which is the arrangement of electron domains (bonds and e- lone pairs) around the central atom, only 5 choices

defined by the positions of the atoms in the molecule, Lone pair electrons **alter** molecular shape

– Arrangement of bonded *atoms, NO lone e- pairs are shown.*

Formed by the nuclei of two atoms with a central atom at the vertex

Electron-domain geometry: trigonal planar

Molecular geometry: bent

8.5 Electron Pair Geometry

VSEPR model predicts the electron domains **repel** one another, arrange themselves to be as far apart as possible, thus minimizing the repulsive interactions between them.

Valence Shell Electron Pair Repulsion model predicts shapes. 8.5

- 1. e pairs stay as far apart as possible to minimize repulsions.
- 2. Shape of a molecule is governed by the number of bonds and lone e pairs present.
- 3. Treat a multiple bond like a single bond when determining a shape.
	- Multiple bonds is 1 area of e- density.
- 4. Lone e- pairs occupy more volume than bonds due to electrostatic repulsion interactions.

8.5 Molecular Geometry

Electron-Pair Geometry and Molecular Geometry Steps to determine the electron-pair and molecular geometries are as follows:

- 1. Draw the Lewis structure of the molecule or polyatomic ion. (e- configuration is needed)
- 2. Count the number of electron domains on the central atom.
- 3. Determine the electron-pair geometry by applying the VSEPR model on central atom
- 4. Determine the molecular geometry by considering the positions of the atoms only and number of lone pairs on the central atom.

8.5 Molecular Geometry

Deviation from Ideal Bond Angles

- A lone pair takes up **space** than the bonding pairs.
- They contain **more electron** density
- Multiple bonds repel strongly than single bonds.

8.5 Electron-Pair Geometry & Molecular Geometry

If there are NO e- lone pairs, the Electron-Domain Geometry and Molecular Geometry are the SAME!

8.5 Electron-Pair Geometry & Molecular Geometry

Axial

connect Learn Succeed" Two positions that are directly across from each other, like the axis of the earth

Equatorial

Three positions in a plane, midway between the axial positions,

are in the region that is like the equator

46

8.5 Electron-Pair Geometry & Molecular Geometry

Summary

Examples of Electron-Pair Geometries and Molecular Geometries Predicted by the VSEPR Model

Type $(X = atoms)$ bonded to

Which if any of the bond angles would you expect to be smaller than the ideal values? H \bigcap

Covalent Bonding and Molecular Structure

8.6 Molecular Polarity

8.6 Molecular Geometry and Polarity

- Covalent bonds are polar when there is an **uneven** attraction for e- between the bonded atoms
- Polar bonds in a molecule can result in a polar molecule
	- Affects the physical properties of a compound
	- Polar molecules are often very soluble in water, whereas nonpolar molecules are not
- Polarity depends of the **individual bonds** and its **molecular geometry**.

8.6 Molecular Polarity

To Determine the molecular polarity, ask these question(s):

- Q1: Is the e- domain geometry and the molecular geometry the same?
	- NO : POLAR
	- YES: Ask Q2
- Q2: Are all the terminal atoms (X atoms) bonded to the central atom the same?
	- NO: POLAR
	- YES: NONPOLAR

Exception- higher level symmetry broken down into simpler symmetry

Trigonal bipyramidal of linear and trigonal planar

Octahedral broken down into simpler symmetry of linear

8.6 Molecular Geometry and Polarity

